Bayesian inference for low rank spatiotemporal neural receptive fields

نویسندگان

  • Mijung Park
  • Jonathan W. Pillow
چکیده

The receptive field (RF) of a sensory neuron describes how the neuron integrates sensory stimuli over time and space. In typical experiments with naturalistic or flickering spatiotemporal stimuli, RFs are very high-dimensional, due to the large number of coefficients needed to specify an integration profile across time and space. Estimating these coefficients from small amounts of data poses a variety of challenging statistical and computational problems. Here we address these challenges by developing Bayesian reduced rank regression methods for RF estimation. This corresponds to modeling the RF as a sum of space-time separable (i.e., rank-1) filters. This approach substantially reduces the number of parameters needed to specify the RF, from 1K-10K down to mere 100s in the examples we consider, and confers substantial benefits in statistical power and computational efficiency. We introduce a novel prior over low-rank RFs using the restriction of a matrix normal prior to the manifold of low-rank matrices, and use “localized” row and column covariances to obtain sparse, smooth, localized estimates of the spatial and temporal RF components. We develop two methods for inference in the resulting hierarchical model: (1) a fully Bayesian method using blocked-Gibbs sampling; and (2) a fast, approximate method that employs alternating ascent of conditional marginal likelihoods. We develop these methods for Gaussian and Poisson noise models, and show that low-rank estimates substantially outperform full rank estimates using neural data from retina and V1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptive Field Inference with Localized Priors

The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typi...

متن کامل

Optimal Prediction of Moving Sound Source Direction in the Owl

Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time....

متن کامل

Low-rank graphical models and Bayesian inference in the statistical analysis of noisy neural data

Low-rank graphical models and Bayesian inference in the statistical analysis of noisy neural data

متن کامل

High-Dimensional Bayesian Geostatistics.

With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understan...

متن کامل

Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models

This article presents an approximation method to reduce the spatiotemporal behavior of localized activation peaks (also called "bumps") in non-linear neural field equations to a set of coupled ordinary differential equations (ODEs) for only the amplitudes and tuning widths of these peaks. This enables a simplified analysis of steady-state receptive fields and their stability, as well as spatiot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013